

H2A: Hydrogen Analysis

Margaret K. Mann

DOE Hydrogen, Fuel Cells, and Infrastructure
Technologies Program
Systems Analysis Workshop
July 28-29, 2004
Washington, D.C.

Charter

 H2A mission: Improve the transparency and consistency of approach to analysis, improve the understanding of the differences among analyses, and seek better validation from industry.

H2A was supported by the HFCIT Program

History

- First H2A meeting February 2003
- Primary goal: bring consistency & transparency to hydrogen analysis
- Current effort is not designed to pick winners
 - R&D portfolio analysis
 - Tool for providing R&D direction
- Current stage: production & delivery analysis consistent cost methodology & critical cost analyses
- Possible subsequent stages: transition analysis, end-point analysis
- Coordination with: Systems Integration, Program Tech Teams, efforts by H2A team member organizations

Skill Set - People

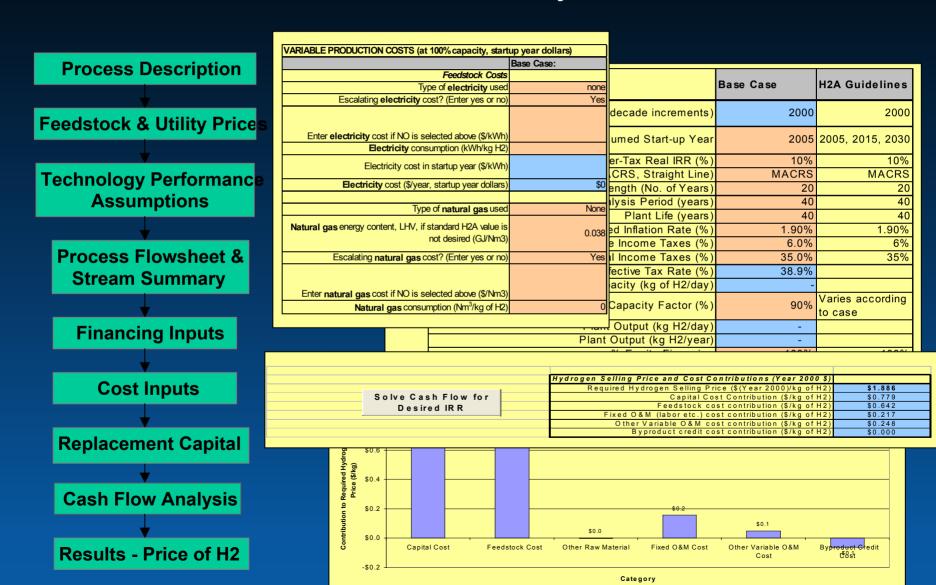
H2A team:

- Central: Johanna Ivy (NREL), Maggie Mann (NREL), Dan Mears (Technology Insights), Mike Rutkowski (Parsons Engineering)
- Forecourt: Brian James (Directed Technologies, Inc.), Steve Lasher (TIAX), Matt Ringer (NREL)
- Delivery: Marianne Mintz (ANL), Joan Ogden (UC Davis), Matt Ringer (NREL)
- Finance, feedstocks, and methodology: Marylynn Placet (PNNL),
 Maggie Mann (NREL), Matt Ringer (NREL)
- Environmental assessment: Michael Wang (ANL)
- DOE: Mark Paster, Roxanne Danz, Pete Devlin
- Key Industrial Collaborators: AEP, Air Products, Areva, BOC, BP, ChevronTexaco, Conoco Phillips, Eastman Chemical, Entergy, Exxon Mobil, FERCO, GE, Praxair, Shell, Stuart Energy, Thermochem

Skill Set – Capabilities Summary

TYPE OF ANALYSIS	RESIDENT CAPABILITY?	STUDIES SPECIFIC TO H ₂ ?	MODELS SPECIFIC TO H ₂ ?		
Resource Analysis	No	No	No		
Technoeconomic Analysis	Yes	Yes	Yes		
Environmental Analysis	Yes	Yes	Yes		
Delivery Analysis	Yes	Yes	Yes		
Infrastructure Development Analysis	No	No	No		
Energy Market Analysis	No	No	No		

Skill Set - Models


H2A Cash Flow Analysis Tool

- Developed over last year
- Documents assumptions, inputs, and results
- Modeling methodology: discounted cash flow rate of return analysis
 - Calculates levelized required selling price of hydrogen for a given IRR
 - Includes a set of agreed-upon financial assumptions but user can input their own set according to company preference
- Platform: Excel, with future links to GREET and Crystal Ball (Monte Carlo sensitivity analysis)
- Limitations:
 - Does not determine actual market price (that's okay for what it was designed to do)
 - Feedstock price projections based on EIA, but can be modified by user
 - Documentation not complete; no customer support line

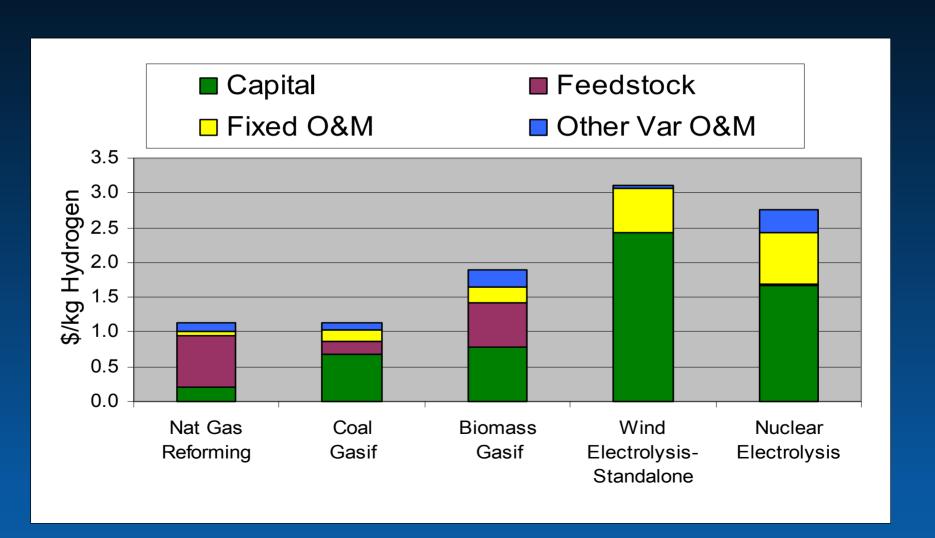
Skill Set - Models

H2A Cash Flow Analysis Tool

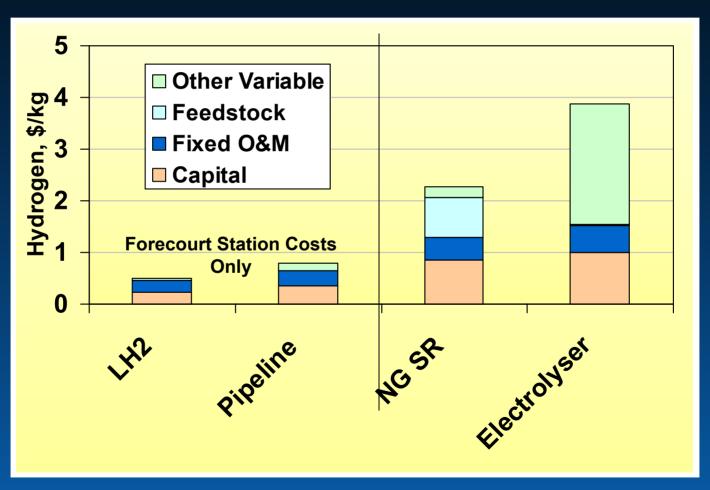
Skill Set - Models

Key H2A Cash Flow Analysis Tool Assumptions

- + Reference year (2000 \$)
- + Debt versus equity financing (100% equity)
- + After-tax internal rate of return (10% real)
- + Inflation rate (1.9%)
- Effective total tax rate (38.9%)
- Design capacity (varies)
- Capacity factor (90% for central (exc. wind); 70% for forecourt)
- Length of construction period (0.5 3 years for central; 0 for forecourt)
- Production ramp up schedule (varies according to case)
- Depreciation period and schedule (MACRS -- 20 yrs for central; 7 yrs for forecourt)
- Plant life and economic analysis period (40 yrs for central; 20 yrs for forecourt)
- Cost of land (\$5,000/acre for central; land is rented in forecourt)
- Burdened labor cost (\$50/hour central; \$15/hour forecourt)
- G&A rate as % of labor (20%)


Skill Set - Studies

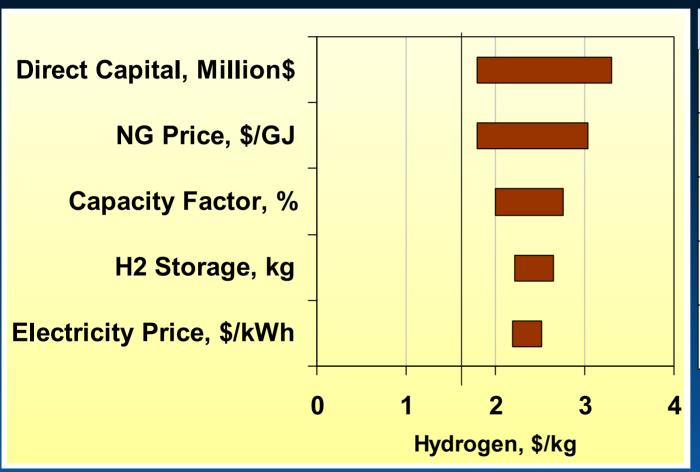
- Completed base cases with sensitivity analysis for current, mid-term, and long-term technologies
 - Natural gas reforming: central and forecourt
 - Coal
 - Biomass
 - Nuclear
 - Central wind / electrolysis
 - Distributed electrolysis
 - Major delivery components and scenarios


Example Results

Mid Term Central Technology Options
- \$/kg Components -

Example Results

Mid-term Forecourt Technology Summary



Note: For side by side comparison, central plant and delivery costs must be added to the Pipeline and LH₂ cases.

Example Results

Sensitivity Results: Mid-term Technology
- Large NG SR

Low	Base	High
0.9	1.8	3.1
1.85	~4.15	8.58
90	70	50
375	525	1,500
0.025	~0.048	0.12

Skill Set - Models

- Delivery Component Cost Model:
 - Allow user to access authoritative information on H₂ delivery component costs and performance
 - "Beta" test version will be released this summer
 - Platform: Excel
 - Limitations:
 - Not complete yet
 - Does not perform optimization calculations

Skill Set - Models

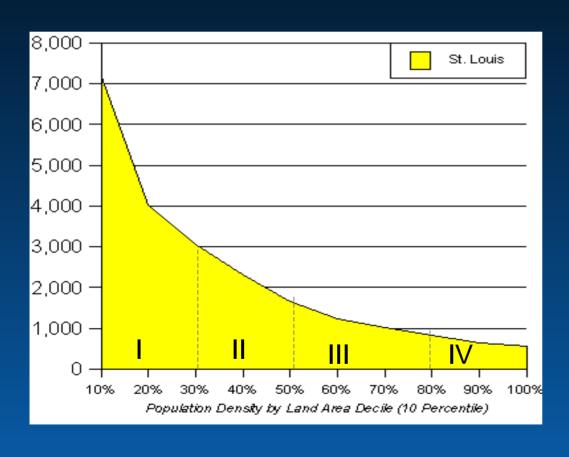
Delivery Cost Component Model

	С		E	F	G	Н		J	- K		М	N	0	Р	0	В -
1			INIMUM STORAGE	AND TRANSP				J	N	L	IVI	IN	U		ų	B -
2	QUICK ESTIN	IA IE OF M	INIMUM STURAGE	AND INAMSE	UNIXIIUNIC	USI										- T
3			ENTER DATA BELO	Entered Values		Calculated Values										
4			Production Rate		kg/h		Enter production	rata in ana of tha	unite aiuen							
5			FroductionFrace	41.1	lb/h	92		race in one or the	units given.							
6					GJ/h	6										
7					MM Btu/h	6										
8					Nm3/h	464										
9					softh	17,651										
10			Round-Trip Distance		km/trip		Enter total miles	traveled ner trin								
11			riodila riip biblanoc	10	miłtrip	10	Enter total miles	areica per aip.								
12			Minimum Storage		d		Enter minimum n	umber of days of	onsite stora	ide.						
13				12	l _h	12										
14			VACC	13.2%			Enter the weighte	d average cost of	f capital for I	the project.						
15										F. 2 2 4 11						
16			CHEAPEST OPTION	N												
17															Minimum	
18			Storage Method	Delivery	Capital (\$)	Capital (\$/kg/hr)	Capital (\$/lb/hr)	Operating (\$/yr)	\$/kg	\$/Ib	\$/GJ	\$/MM Bti	\$/1,000 Nm3	\$/1,000 scf	Storage (hr)	
19	With Undergr	ound Option:		GH2-Truck	\$450,161	\$10,881	\$4,936	\$385,405		\$0.51						
20	Without Undergr	ound Option:	GH2	GH2-Truck	\$925,735	\$22,286	\$10,109	\$476,288	\$1.38	\$0.62	\$9.70	\$10.23	\$123.83	\$3.25	5 12	
21			GH2 storage with GH2-1	Fruck delivery is th	e cheapest optio	n if underground st	orage is not availa	ble.								
22																
23			COMBINED STORA	GE & DELIVER	RY COSTS											
24		Cost Ratio													Minimum	
		(No Under.)		Delivery	Capital (\$)		Capital (\$/lb/hr)			\$116	\$/GJ				Storage (hr)	
26	1.23	1.00		GH2-Truck	\$925,735	\$22,286	\$10,109	\$476,288					\$123.83			
27	3.27	2.66		GH2-Rail	\$3,059,736	\$74,094	\$33,609	\$1,260,935					\$328.98			
28	1.87	1.52		MH2-Truck	\$1,825,735	\$44,177	\$20,039	\$720,588					\$187.78			
29	5.87	4.76		MH2-Rail	\$9,359,736	\$227,332		\$2,256,453					\$589.59			
30	229.66	186.41		Pipeline	\$500,441,173	\$12,201,539	\$5,534,618	\$88,850,881			\$1,808.67					
31	3.26	2.65		LH2-Truck	\$4,984,190	\$119,696	\$54,294	\$1,217,965					\$327.67			
32	2.96	2.40		LH2-Rail	\$5,115,517	\$122,846		\$1,124,182					\$297.02			
33	4.40 1.45	3.57	LHZ MH2	LH2-Ship	\$5,049,474 \$1,475,750	\$121,210 \$35,475	\$54,981	\$1,584,281								
35	3.92		MH2	GH2-Truck GH2-Rail	\$1,475,750		\$16,092	\$560,705 \$1,512,470					\$145.49 \$393.52			
36	2.08		MH2	MH2-Truck	\$4,551,499	\$109,868 \$57,366		\$1,512,470 \$805,006					\$393.52			
37	2.08 6.51		MH2	MH2-Truck	\$2,375,750 \$10,851,499	\$263,105					•		¥			
38	2.93		MH2	Pipeline	\$6,225,752	\$263,105 \$151,012		\$2,507,988 \$1,137,028					\$294.04	•		
39	1.00		Under.	GH2-Truck	\$6,225,752	\$10,881		\$1,137,028 \$385,405					\$254.04			
40	2.91		Under. Under.	GH2-Truck	\$2,304,806	\$55,991		\$1,120,479					\$292.94			
41	1.64		Under.	MH2-Truck	\$2,304,606	\$32,772		\$629,706					\$164.46			
42	5.51		Under.	MH2-Truck	\$8,604,806	\$209,228		\$2,115,997								
43	2.48		Under. Under.	Pipeline	\$5,200,163	\$126,417	\$57,343	\$2,115,337					\$249.06	•		
44	2.29		None	Pipeline	\$5,000,002	\$121,617	\$55,165	\$887,273					\$229.96			900
77										φ1.10	φ10.02	φ10.33	φεε3.30	\$6.0		
	▶ ▶ \ Summa	ry-Min / Su	mmary / Storage / T	rans ∤ Store-As	ssump / Trans	-Assump / Sto	rage-Min ∤ Trar	is-Min / H2R	4							

Skill Set - Studies

Delivery Scenarios

Market Type	Early Fleet Market (1%)	General Light Duty Vehicles: Market Penetration Small Medium Large (10%) (30%) (70%)					
Metro	X	X	X	Х			
Rural			X				
Interstate			X				


Delivery costs are based on component combinations that meet the demands of the market

3 Delivery Modes: Compressed Gas Truck;

Liquid H2 Truck; Gas Pipeline

Skill Set - Studies

Delivery Component Model and Delivery Cost Analysis: Population Density => Household Vehicle Density => H₂ Demand

- Population density consistently peaks in 10-20% of urbanized area
- Shape of density function (rate of decline) reflects compactness vs. sprawl
- HH vehicle density rises from <0.5/capita in core to 1.16/capita in outer zones

Future

Remainder of FY03:

- Incorporate energy efficiency and environmental measures (Summer '04)
- Website with spreadsheet tool, results, and detailed documentation (Summer '04)
- Complete delivery component and scenario cost analysis (Fall '04)
- Complete remaining cases (Fall '04)
- Peer-reviewed paper (Fall '04)
- Plan for next phase of H2A
 - Transition analysis
 - End-point analysis

Analysis Issues

- Coordination
- Cooperation
- -Interaction
- -Peer-review